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Multiple forms of intermittency in partial differential equation dynamo models
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We find concrete evidence for the presence of crisis-induced and Pomeau-Manneville type-I intermittencies
in an axisymmetric partial differential equation~PDE! mean-field dynamo model. These findings are of po-
tential importance for two different reasons. First, as far as we are aware, this is the first time detailed evidence
has been produced for the occurrence of these types of intermittency for such deterministic PDE models. And
second, despite the rather idealized nature of these models, the concrete evidence for the occurrence of more
than one type of intermittency in such models makes it in principle possible that different types of intermit-
tency may occur in different solar-type stars or even in the same star over different epochs. In this way a
multiple intermittency frameworkmay turn out to be of importance in understanding the mechanisms respon-
sible for grand-minima type behavior in the Sun and solar-type stars and in particular in the interpretation of
the corresponding observational and proxy evidence.@S1063-651X~99!08811-X#

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Intermittency has been observed in a variety of real s
tings as well in a vast number of numerical models. A gr
deal of effort has therefore gone into understanding th
modes of behavior in the context of deterministic dynami
systems theory. These studies have demonstrated the
tence of a number of different types of intermittency~such as
Pomeau-Manneville@1#, crisis @2#, and on-off @3# intermit-
tencies!, each with their own associated signatures and s
ings. Many of these forms of intermittency have in turn be
concretely shown to be present in experiments and nume
studies of dynamical systems in a variety of settings~see
@4–6# and references therein!.

An important potential domain of applicability of suc
behavior arises in understanding the mechanisms underl
the intermediate time-scale variability in the Sun@7#—the
occurrence of the so-calledmaunder or grand minima—
during which solar activity~as deduced from the sunsp
numbers! was greatly diminished@7,8#. This behavior is also
confirmed by evidence coming from the analysis of pro
data @9#. There is also some evidence for similar types
variability in solar-type stars@10#.

The idea that some type of dynamical intermittency m
underpin the grand minima type variability in the sunsp
record~the intermittency hypothesis@11#! goes back at leas
to the late 1970s@12–14#. This idea has been the subject
intense study over the recent years and has involved the
ployment of various classes of dynamo models, includ
ordinary differential equation~ODE! ~e.g., @13,15#! as well
as partial differential equation~PDE! models ~e.g., @16–
18,24#!. In addition to the phenomenological evidence f
the presence of intermittent-type behaviors in dynamo m
els @16–20#, concrete evidence has recently been found
the presence of particular types of intermittency in both O
dynamo models@21,22# as well as a recently discovered ge
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eralization of on-off intermittency, referred to asin-out in-
termittency@23#, in PDE models@24#.

Here we wish to report concrete evidence for the occ
rence of two other types of intermittency, namely the cris
induced and Pomeau-Manneville type-I intermittencies,
PDE mean-field dynamo models. The organization of
paper is as follows. In Sec. II we briefly introduce the mod
studied here. Section III summarizes our evidence dem
strating the presence of these types of intermittencies in
model, and finally in Sec. IV we draw our conclusions.

II. MODEL

Ideally one would wish to employ the full three
dimensional~3D! dynamo models with a minimum numbe
of approximations and simplifying assumptions. Despite
number of important recent attempts@25–27#, the difficulty
of dealing with small scale turbulence makes a detailed
extensive self-consistent study of such fully turbulent
gimes in stars still computationally impractical~see, e.g.,
@26,28–30#!.

In view of this, an alternative approach in studies of st
lar dynamos has been to employ mean-field mod
@15,16,18,19,31,32#. We should mention that there is an o
going debate regarding the nature and realistic value of s
models @30#. Nevertheless, 3D turbulence simulations
seem to produce magnetic fields whose global proper
~such as field parity and time dependence! are similar to
those expected from corresponding mean-field dynamo m
els @33#. In this way mean-field dynamo models seem
reproduce certain features of the more complicated mo
and allow the study of certain global properties of magne
fields in the Sun and solar-type stars~see, for example,
@33,34#!.

The standard mean-field dynamo equation is given by

]B

]t
5“3~u3B1aB2h t“3B!, ~1!

whereB andu are the mean magnetic field and mean velo
ity, respectively, and the turbulent magnetic diffusivityh t
5435 © 1999 The American Physical Society
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and the coefficienta arise from the correlation of small sca
turbulent velocities and magnetic fields (a effect! @35#. We
consider the usual algebraic form ofa quenching, namely

a5
a0 cosu

11uBu2
, ~2!

wherea05const andu is the co-latitude.
We solve Eq.~1! in an axisymmetric configuration, and i

the following, as is customary@32#, we shall discuss the be
havior of the solutions by monitoring the total magnetic e
ergy, E51/2m0*B2dV, wherem0 is the induction constant
and the integral is taken over the dynamo region. We splE
into two parts,E5EA1ES , whereEA and ES are respec-
tively the energies of the antisymmetric and symmetric pa
of the field with respect to the equator. The overall parityP
is given byP5@ES2EA#/E, soP521 denotes an antisym
metric ~dipolelike! pure parity solution andP511 a sym-
metric ~quadrupolelike! pure parity solution.

For the numerical results reported in the following se
tion, we used a modified version of the axisymmetric d
namo code of Brandenburget al. @32# employed recently in
@36#. These models are constructed from a complete sp
of radiusR by removing an inner concentric sphere of rad
r 0 and a conical section of semiangleu0 about the rotation
axis, from both the north and south polar regions~see@36#
for details of the model and the relevant parameters!. To test
the robustness of the code we verified that no qualita
changes were produced by employing a finer grid and dif
ent temporal step length~we used a grid size of 41381 mesh
points and a step length of 1024R2/h t in the results pre-
sented in this paper!. For the following results we useCV

52104, which give the magnitude of the differential rota
tion andu0545°. The magnitude of thea effect is given by
the dynamo parameterCa . In the next section we show in
turn concrete evidence for the occurrence of crisis-indu
and Pomeau-Manneville type-I intermittencies.

III. RESULTS

A. Crisis-induced intermittency

As far as their detailed underlying mechanisms and te
poral signatures are concerned, crises come in three vari
@2#. Here we shall be concerned with only one of these typ
referred to as an ‘‘attractor merging crisis,’’ whereby as
system parameter is varied, two or more chaotic attrac
merge to form a single attractor. There is both experime
and numerical evidence for this type of intermittency~see,
for example,@2,4# and references therein!. In particular, this
type of behavior has been discovered in a six-dimensio
truncation of mean-field dynamo models@21#. Figure 1
shows the plots of the energy and parity for the above mo
as a function of time, calculated withr 050.2 and Ca
525.202, which show a bimodal behavior, switching inte
mittently between two different chaotic states.

To determine the nature of this behavior more precise
we have plotted in Fig. 2 the return maps for the PDE mod
~1!, showing the attractors before and after the merging.
can be seen, the resulting merged attractor is, as expe
-
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larger than the superposition of the two preexisting attr
tors.

These results can be taken as indications for the pres
of crisis-induced intermittency in this model. To substantia
this further, we recall that another important signature of t
type of intermittency is the wayt, the average time betwee
switches, scales with the system parameter, in this case,Ca .
According to Grebogiet al. @2#, for a large class of dynami
cal systems this relation takes the form

t;uCa2Ca* u2g, ~3!

where the real constantg is the critical exponent characte
istic of the system under consideration andCa* is the critical
value ofCa at which the two chaotic attractors merge.

FIG. 1. Example of crisis-induced intermittency in a shell d
namo with a cut, withr 050.2, Ca525.202, CV52104, and u0

545°.

FIG. 2. Return maps showing the attractors in the PDE mo
~1! before~top panels! and after~bottom panel! the merging. Note
that, as expected, the merged attractor is larger than the super
tion of the two previous attractors.
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The model under study here is a PDE system that is
mally infinite dimensional. Such PDE models are nume
cally costly to integrate over long enough intervals of tim
~sometimes in excess of 5000 time units! necessary in orde
to obtain the scaling of the type~3!. Furthermore, the dem
onstration of such scaling requires a precise determinatio
the critical valueCa* , which is difficult since as one ap
proaches this valuet diverges and the integration time b
comes prohibitive. Despite these difficulties, we have s
ceeded in obtaining strong evidence for the presence of s
a scaling as depicted in Fig. 3, with the correspondingg
51.0860.05. Grebogiet al. @2# conjecture that there may b
a general tendency forg to be larger for higher-dimensiona
attractors. We do have a value ofg higher than the previous
one found for a related six-dimensional ODE dynamo mo
@21# but much lower than the value range suggested by G
bogi et al. Therefore, the conjectured range may need mo
fication for large high-dimensional systems.

There is also evidence for an enlargement of the fi
attractor after merging, as shown by the larger amplitude
variation in the parity, in the sense that the parity gets clo
to 21 after the merging, as depicted in Fig. 2. This helped
to numerically arrive at a better estimate for the critical va
Ca* . These indicators, taken together, amount to strong
dence for the presence of crisis-induced intermittency for
model.

B. Pomeau-Manneville type-I intermittency

This type of intermittency, which is brought abo
through a tangent bifurcation, results in the system switch
back and forth between a ‘‘ghost’’ periodic orbit and sudd
bursts of chaotic behavior@1#. There is both experimenta
and numerical evidence for this type of intermittency~see,
for example,@5,37# and references therein!. In particular, this
type of behavior has been discovered in a 12-dimensio
truncation of the mean-field dynamo model@22#.

To demonstrate the presence of this type of intermitte
in the above PDE dynamo model, we have plotted in Fig
the energy and parity as a function of time for the parame
values r 050.7 andCa528.0, which clearly demonstrate

FIG. 3. Scaling of the average times between switchest as a
function of (Ca2Ca* ) for crisis-induced intermittency for the
model ~1!. The slope is found to beg51.0860.05.
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switches between nearly periodic behavior and sud
bursts. We note that interestingly the energy in this c
shows strong modulation that could be of interest in accou
ing for the occurrence of grand type minima in sunspot
tivity.

Another signature of this type of intermittency is provide
by the specific characteristics of its corresponding pow
spectrum. By employing finite-dimensional maps@6#, it has
been shown that the corresponding spectra have a broad
feature whose shape obeys approximately the inverse-po
law 1/f for f . f s , wheref s is the saturation frequency. Be
low this frequency there is a flat plateau induced by no
that causes arbitrarily long laminar phases to become fin

As further evidence for this type of intermittency in th
model ~1!, we have plotted in Fig. 5 the power spectrum
Ca528.0, obtained by averaging over 16 different initi
conditions corresponding to different initial parities. As c
be seen, the power spectrum shows both the flat plateau

FIG. 4. Example of type-I intermittency in a shell dynamo wi
a cut, withr 050.7, Ca528.0, CV52104, andu0545°.

FIG. 5. Power spectra of the time series in Fig. 4 for typ
intermittency.
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the 1/f power-law scaling. Taken together, these indicato
amount to strong evidence for the presence of Pome
Manneville type-I intermittency for this model.

IV. CONCLUSION

We have obtained concrete evidence, in terms of ph
space signatures, spectra, and scalings to demonstrate
presence of crisis-induced and the Pomeau-Mannev
type-I intermittencies in axisymmetric mean-field PDE d
namo models. Despite the rather idealized nature of th
models, this is of potential importance since it shows t
occurrence of two more types of intermittency~in addition to
in-out intermittency recently discovered@24#! in these mod-
els, which may in turn be taken as an indication that mor
r
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than one type of intermittency may occur in solar and ste
dynamos. This suggests that any observational program
identifying the mechanisms underlying grand minima ty
variability needs to take into account the possibility that m
tiple intermittency mechanisms may be operative in differ
stars of similar type, or even in the same star over differ
epochs. This would also be of importance in the interpre
tion of proxy data. In this way a more appropriate hypothe
regarding such variability would be that of amultiple-
intermittency hypothesis.
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