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Multiple forms of intermittency in partial differential equation dynamo models
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We find concrete evidence for the presence of crisis-induced and Pomeau-Manneville type-I intermittencies
in an axisymmetric partial differential equatiéRDE) mean-field dynamo model. These findings are of po-
tential importance for two different reasons. First, as far as we are aware, this is the first time detailed evidence
has been produced for the occurrence of these types of intermittency for such deterministic PDE models. And
second, despite the rather idealized nature of these models, the concrete evidence for the occurrence of more
than one type of intermittency in such models makes it in principle possible that different types of intermit-
tency may occur in different solar-type stars or even in the same star over different epochs. In this way a
multiple intermittency frameworknay turn out to be of importance in understanding the mechanisms respon-
sible for grand-minima type behavior in the Sun and solar-type stars and in particular in the interpretation of
the corresponding observational and proxy evidef®&063-651X99)08811-X]

PACS numbd(s): 05.45-a

[. INTRODUCTION eralization of on-off intermittency, referred to asout in-
termittency[23], in PDE modelq24].

Intermittency has been observed in a variety of real set- Here we wish to report concrete evidence for the occur-
tings as well in a vast number of numerical models. A greafence of two other types of intermittency, namely the crisis-
deal of effort has therefore gone into understanding thes#duced and Pomeau-Manneville type-l intermittencies, in
modes of behavior in the context of deterministic dynamical?DE mean-field dynamo models. The organization of the
systems theory. These studies have demonstrated the exRgper is as follows. In Sec. Il we briefly introduce the model
tence of a number of different types of intermitterisych as studied here. Section Ill summarizes our evidence demon-
Pomeau-Mannevillg1], crisis[2], and on-off[3] intermit- strating the presence of these types of intermittencies in this
tencies, each with their own associated signatures and scamodel, and finally in Sec. IV we draw our conclusions.
ings. Many of these forms of intermittency have in turn been

concretely shown to be present in experiments and numerical Il. MODEL
studies of dynamical systems in a variety of settiligse i
[4—6] and references thergin Ideally one would wish to employ the full three-

An important potential domain of applicability of such dimensional(3D) dynamo models with a minimum number
behavior arises in understanding the mechanisms underlyirf @PProximations and simplifying assumptions. Despite a
the intermediate time-scale variability in the S[ii—the = number of important recent attemg@5-27, the difficulty
occurrence of the so-callethaunderor grand minima— of dealllng with sma!l scale turbulence makes a detailed and
during which solar activity(as deduced from the sunspot €xtensive self-consistent study of such fully turbulent re-
numbers was greatly diminishefi7,8]. This behavior is also  9imes in stars still computationally impracticiee, e.g.,
confirmed by evidence coming from the analysis of proxy[26*28,_30)- , ) i )
data[9]. There is also some evidence for similar types of In view of this, an alternative approach in studies of stel-
variability in solar-type starg10]. lar dynamos has been to employ mean-field models

The idea that some type of dynamical intermittency mayl15:16,18,19,31,32We should mention that there is an on-
underpin the grand minima type variability in the sunspot90ing debate regarding the nature and reallstl_c valu_e of such
record (the intermittency hypothesig1]) goes back at least models [30]. Neverthelessz 3D turbulence simulations d.o
to the late 1970§12—14. This idea has been the subject of S68M to produce magnetic fields whose global properties
intense study over the recent years and has involved the erfSUch as field parity and time dependeneee similar to
ployment of various classes of dynamo models, includingthose expected from corresponding mean-field dynamo mod-

ordinary differential equatiofODE) (e.g.,[13,15) as well els [33]. In this ‘way mean-field dynamo mod_els seem to
as partial differential equatiotPDE) models (e.g., [16— reproduce certain features of the more complicated models

18,24)). In addition to the phenomenological evidence for@nd allow the study of certain global properties of magnetic
the presence of intermittent-type behaviors in dynamo modfi€/ds in the Sun and solar-type stafsee, for example,
els[16—20, concrete evidence has recently been found for33.34). ) o

the presence of particular types of intermittency in both ODE ~ The standard mean-field dynamo equation is given by
dynamo model$21,22 as well as a recently discovered gen-
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and the coefficient arise from the correlation of small scale 10.0 T - - T
turbulent velocities and magnetic fielda gffec) [35]. We 2.0
consider the usual algebraic form efquenching, namely ’
% 6.0
2
g Cosh o 4.0
a=———-:, 2
1+|BJ? 2.0

0.0 ' : : ¢
where ag=const andd is the co-latitude.

We solve Eq(1) in an axisymmetric configuration, and in
the following, as is customand2], we shall discuss the be- 2
havior of the solutions by monitoring the total magnetic en—§;
ergy, E=1/2u,/B?dV, whereu, is the induction constant,
and the integral is taken over the dynamo region. We &plit
into two parts,E=E,+Eg, whereE, and Eg are respec-
tively the energies of the antisymmetric and symmetric parts T 200 400 600 800 1000
of the field with respect to the equator. The overall paFity Time t

I;Stlxg? d?g(ie_liigsgulzrle\]éi’rif; Eo_lu;olnd:rrl]cl%tis f{l :n;;?rl]rf]_ FIG. 1. Example of crisis-induced intermittency in a shell dy-

. . . ; namo with a cut, withr,=0.2, C,=25.202,C,=—10% and 6,
metric (quadrupolelike pure parity solution. —45°

For the numerical results reported in the following sec-

tion, we used a modified version of the axisymmetric dy-
namo code of Brandenbusgg al. [32] employed recently in
[36]. These models are constructed from a complete sphetté?r
of radiusR by removing an inner concentric sphere of radius
ro and a conical section of semianglg about the rotation
axis, from both the north and south polar regigase[36]

larger than the superposition of the two preexisting attrac-

S.

These results can be taken as indications for the presence

of crisis-induced intermittency in this model. To substantiate

this further, we recall that another important signature of this

for details of the model and the relevant parametdrs test typ.e of |nterm|tten9y is the way, the average .tlme. between
eswnches, scales with the system parameter, in this &gse,

the robustness of the code we verified that no qualitativ d Greboait al. [2]. f I | fd !
changes were produced by employing a finer grid and differ£\ccording to Greboget al.[2], for a large class of dynami-

ent temporal step lengtiwe used a grid size of 4181 mesh @l Systems this relation takes the form

points and a step length of 16R?/ 7, in the results pre- 7~|C,—C*|"7 3)
sented in this paperFor the following results we us€g “oTel

=—10% which give the magnitude of the differential rota-

tion and#,=45°. The magnitude of the effect is given by ~ where the real constant is the critical exponent character-
the dynamo paramete®,,. In the next section we show in istic of the system under consideration &l is the critical
turn concrete evidence for the occurrence of crisis-inducestalue ofC,, at which the two chaotic attractors merge.
and Pomeau-Manneville type-l intermittencies.

0.0 T e 0.0
lll. RESULTS 02 ¢ b3 —02
A. Crisis-induced intermittency g 04T 1t 04
As far as their detailed underlying mechanisms and tem-g 06t 1t 0.6
poral signatures are concerned, crises come in three varietie 08 | 1 —0.8
[2]. Here we shall be concerned with only one of these types.  _1 o e . et -1,
referred to as an “attractor merging crisis,” whereby as a -1.0-0.8 -0.6 -0.4 0.2 -0.8-0.6 -04-0.2 0.0
system parameter is varied, two or more chaotic attractors 0.0 T
merge to form a single attractor. There is both experimental —02
and numerical evidence for this type of intermitter(sge, -
for example[2,4] and references thergirin particular, this £ —04
type of behavior has been discovered in a six-dimensiona g -06
truncation of mean-field dynamo mode]21]. Figure 1 ~ 08
shows the plots of the energy and parity for the above mode

as a function of time, calculated withy=0.2 and C, 0 008 06 04 05 0.0
=25.202, which show a bimodal behavior, switching inter- Parity
mittently between two different chaotic states. ©

To determine the nature of this behavior more precisely, FIG. 2. Return maps showing the attractors in the PDE model
we have plotted in Fig. 2 the return maps for the PDE model$1) before(top panels and after(bottom panelthe merging. Note
(1), showing the attractors before and after the merging. Ashat, as expected, the merged attractor is larger than the superposi-
can be seen, the resulting merged attractor is, as expectaibn of the two previous attractors.
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function of (C,—C%) for crisis-induced intermittency for the
model(1). The slope is found to bg=1.08+0.05. FIG. 4. Example of type-I intermittency in a shell dynamo with
a cut, withr,=0.7, C,=28.0, C,=—10%, and §,=45°.

The model under study here is a PDE system that is for-
mally infinite dimensional. Such PDE models are numeri-q\ itches between nearly periodic behavior and sudden
cally costly to integrate over long enough intervals of timep st We note that interestingly the energy in this case
(sometimes in excess of 5000 time uhitecessary in order gpqys strong modulation that could be of interest in account-
to obtain the scaling of the typ@). Furthermore, the dem- i, for the occurrence of grand type minima in sunspot ac-
onstration of such scaling requires a precise determination Cﬁvity.
the critical valueC7, which is difficult since as one ap-  Anpother signature of this type of intermittency is provided
proaches this value diverges and the integration time be- py the specific characteristics of its corresponding power
comes prohibitive. Despite these difficulties, we have sucspectrum. By employing finite-dimensional mdj, it has
ceeded in obtaining strong evidence for the presence of sugieen shown that the corresponding spectra have a broadband
a scaling as depicted in Fig. 3, with the corresponding feature whose shape obeys approximately the inverse-power
=1.08+0.05. Greboggt al.[2] conjecture that there may be |aw 1/f for f>f, wheref, is the saturation frequency. Be-
a general tendency foy to be larger for higher-dimensional |ow this frequency there is a flat plateau induced by noise
attractors. We do have a value pfhigher than the previous that causes arbitrarily long laminar phases to become finite.
one found for a related six-dimensional ODE dynamo model As further evidence for this type of intermittency in the
[21] but much lower than the value range suggested by Gremodel (1), we have plotted in Fig. 5 the power spectrum at
bogi et al. Therefore, the conjectured range may need modic =28.0, obtained by averaging over 16 different initial
fication for large high-dimensional systems. conditions corresponding to different initial parities. As can

There is also evidence for an enlargement of the finahe seen, the power spectrum shows both the flat plateau and
attractor after merging, as shown by the larger amplitudes of
variation in the parity, in the sense that the parity gets closer . . .
to —1 after the merging, as depicted in Fig. 2. This helpedus | _____ 1/f noise — TypeI Intermittency
to numerically arrive at a better estimate for the critical value —— Power spectra 16-point average
C* . These indicators, taken together, amount to strong evi- B <
dence for the presence of crisis-induced intermittency for this. 10 f E
model.
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B. Pomeau-Manneville type-I intermittency

This type of intermittency, which is brought about
through a tangent bifurcation, results in the system switchin
back and forth between a “ghost” periodic orbit and sudden .
bursts of chaotic behavidrl]. There is both experimental 107 f 3
and numerical evidence for this type of intermitter(sge, Ufpo‘gg?
for example[5,37] and references thergirn particular, this ’
type of behavior has been discovered in a 12-dimensiona o
truncation of the mean-field dynamo mod2p)]. 10 = o 0 o 10

To demonstrate the presence of this type of intermittency Frequency f
in the above PDE dynamo model, we have plotted in Fig. 4
the energy and parity as a function of time for the parameter FIG. 5. Power spectra of the time series in Fig. 4 for type-I
valuesry=0.7 andC_,=28.0, which clearly demonstrates intermittency.
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the 1f power-law scaling. Taken together, these indicatorghan one type of intermittency may occur in solar and stellar
amount to strong evidence for the presence of Pomeatflynamos. This suggests that any observational program for
Manneville type-I intermittency for this model. identifying the mechanisms underlying grand minima type
variability needs to take into account the possibility that mul-
tiple intermittency mechanisms may be operative in different
IV. CONCLUSION stars of similar type, or even in the same star over different
epochs. This would also be of importance in the interpreta-
We have obtained concrete evidence, in terms of phasiPh Of Proxy data. In this way a more appropriate hypothesis
. . regarding such variability would be that of moultiple-
space S|gnature.s,. spectra, and scalings to demonstrate. tilﬁ‘?qermittency hypothesis
presence of crisis-induced and the Pomeau-Manneville
type-I intermittencies in axisymmetric mean-field PDE dy- ACKNOWLEDGMENTS
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